
Complex Logical Reasoning over Knowledge Graphs
using Large Language Models

Nurendra Choudhary
Department of Computer Science

Virginia Tech, Arlington, VA, USA
nurendra@vt.edu

Chandan K. Reddy
Department of Computer Science

Virginia Tech, Arlington, VA, USA
reddy@cs.vt.edu

Abstract

Reasoning over knowledge graphs (KGs) is a challenging task that requires a deep
understanding of the complex relationships between entities and the underlying
logic of their relations. Current approaches rely on learning geometries to embed
entities in vector space for logical query operations, but they suffer from subpar
performance on complex queries and dataset-specific representations. In this paper,
we propose a novel decoupled approach, Language-guided Abstract Reasoning
over Knowledge graphs (LARK), that formulates complex KG reasoning as a
combination of contextual KG search and logical query reasoning, to leverage
the strengths of graph extraction algorithms and large language models (LLM),
respectively. Our experiments demonstrate that the proposed approach outperforms
state-of-the-art KG reasoning methods on standard benchmark datasets across
several logical query constructs, with significant performance gain for queries of
higher complexity. Furthermore, we show that the performance of our approach
improves proportionally to the increase in size of the underlying LLM, enabling
the integration of the latest advancements in LLMs for logical reasoning over KGs.
Our work presents a new direction for addressing the challenges of complex KG
reasoning and paves the way for future research in this area.

1 Introduction

Knowledge graphs (KGs) encode knowledge in a flexible triplet schema where two entity nodes are
connected by relational edges. However, several real-world KGs, such as Freebase [2], Yago [24],
and NELL [5], are often large-scale, noisy, and incomplete. Thus, reasoning over such KGs is a
fundamental and challenging problem in AI research. The over-arching goal of logical reasoning is
to develop answering mechanisms for first-order logic (FOL) queries over KGs using the operators of
existential quantification (∃), conjunction (∧), disjunction (∨), and negation (¬). Current research
on this topic primarily focuses on the creation of diverse latent space geometries, such as vectors
[15], boxes [23], hyperboloids [8], and probabilistic distributions [22], in order to effectively capture
the semantic position and logical coverage of knowledge graph entities. Despite their success, these
approaches are limited in their performance due to the following. (i) Complex queries: They rely on
constrained formulations of FOL queries that lose information on complex queries that require chain
reasoning [7] and involve multiple relationships between entities in the KG, (ii) Generalizability:
optimization for a particular KG may not generalize to other KGs which limits the applicability of
these approaches in real-world scenarios where KGs can vary widely in terms of their structure and
content, and (iii) Scalability: intensive training times that limit the scalability of these approaches to
larger KGs and incorporation of new data into existing KGs. To address these limitations, we aim to
leverage the reasoning abilities of large language models (LLMs) in a novel framework, shown in
Figure 1, called Language-guided Abstract Reasoning over Knowledge graphs (LARK).

ar
X

iv
:2

30
5.

01
15

7v
2

 [
cs

.L
O

]
 2

4
M

ay
 2

02
3

(a) Input logical query. (b) Query prompt. (c) Decomposed prompt. (d) LLM answers.

Figure 1: Example of LARK’s query chain decomposition and logically-ordered LLM answering for
effective performance. LLMs are more adept at answering simple queries, and hence, we decompose
the multi-operation complex logical query (a,b) into elementary queries with single operation (c) and
then use a sequential LLM-based answering method to output the final answer (d).

In LARK, we utilize the logical queries to search for relevant subgraph contexts over knowledge
graphs and perform chain reasoning over these contexts using logically-decomposed LLM prompts.
To achieve this, we first abstract out the logical information from both the input query and the KG.
Given the invariant nature of logic1, this enables our method to focus on the logical formulation,
avoid model hallucination2, and generalize over different knowledge graphs. From this abstract KG,
we extract relevant subgraphs using the entities and relations present in the logical query. These
subgraphs serve as context prompts for input to LLMs. In the next phase, we need to effectively handle
complex reasoning queries. From previous works [17, 30], we realize that LLMs are significantly less
effective on complex prompts, when compared to a sequence of simpler prompts. Thus to simplify the
query, we exploit their logical nature and deterministically decompose the multi-operation query into
logically-ordered elementary queries, each containing a single operation (depicted in the transition
from Figure 1b to 1c). Each of these decomposed logical queries is then converted to a prompt and
processed through the LLM to generate the final set of answers (shown in Figure 1d). The logical
queries are handled sequentially, and if query y depends on query x, then x is scheduled before y.
Operations are scheduled in a logically-ordered manner to enable batching different logical queries
together, and answers are stored in caches for easy access.

The proposed approach effectively integrates logical reasoning over knowledge graphs with the
capabilities of LLMs, and to the best of our knowledge, is the first of its kind. Unlike previous
approaches that rely on constrained formulations of first-order logic (FOL) queries, our approach
utilizes logically-decomposed LLM prompts to enable chain reasoning over subgraphs retrieved
from knowledge graphs, allowing us to efficiently leverage the reasoning ability of LLMs. Our
KG search model is inspired by retrieval-augmented techniques [6] but realizes the deterministic
nature of knowledge graphs to simplify the retrieval of relevant subgraphs. Moreover, compared to
other prompting methods [17, 27, 30], our chain decomposition technique enhances the reasoning
capabilities in knowledge graphs by leveraging the underlying chain of logical operations in complex
queries, and by utilizing preceding answers amidst successive queries in a logically-ordered manner.
To summarize, the primary contributions of this paper are as follows:

1. We propose, Language-guided Abstract Reasoning over Knowledge graphs (LARK), a novel
model that utilizes the reasoning abilities of large language models to efficiently answer FOL
queries over knowledge graphs.

2. Our model uses entities and relations in queries to find pertinent subgraph contexts within abstract
knowledge graphs, and then, performs chain reasoning over these contexts using LLM prompts of
decomposed logical queries.

3. Our experiments on logical reasoning across standard KG datasets demonstrate that LARK
outperforms the previous state-of-the-art approaches by 33%− 64% MRR on 14 FOL query types
based on the operations of projection (p), intersection (∧), union (∨), and negation (¬).

4. We establish the advantages of chain decomposition by showing that LARK performs 9%− 24%
better on decomposed logical queries when compared to complex queries on the task of logical
reasoning. Additionally, our analysis of LLMs shows the significant contribution of increasing
scale and better design of underlying LLMs to the performance of LARK.
1logical queries follow the same set of rules and procedures irrespective of the KG context.
2the model ignores semantic common-sense knowledge and infers only from the KG entities for answers.

2

2 Related Work

Our work is at the intersection of two topics, namely, logical reasoning over knowledge graphs and
reasoning prompt techniques in LLMs.

Logical Reasoning over KGs: Initial approaches in this area [3, 11, 15, 18] focused on capturing
the semantic information of entities and the relational operations involved in the projection between
them. However, further research in the area revealed a need for new geometries to encode the
spatial and hierarchical information present in the knowledge graphs. To tackle this issue, models
such as Query2Box [23], HypE [8], PERM [7], and BetaE [22] encoded the entities and relations
as boxes, hyperboloids, Gaussian distributions, and beta distributions, respectively. Additionally,
approaches such as CQD [1] have focused on improving the performance of complex reasoning tasks
through the answer composition of simple intermediate queries. In another line of research, HamQA
[12] and QA-GNN [29] have developed question-answering techniques that use knowledge graph
neighborhoods to enhance the overall performance. We notice that previous approaches in this area
have focused on enhancing KG representations for logical reasoning. Contrary to these existing
methods, our work provides a systematic framework that leverages the reasoning ability of LLMs
and tailors them toward the problem of logical reasoning over knowledge graphs.

Reasoning prompts in LLMs: Recent studies have shown that LLMs can learn various NLP tasks
with just context prompts [4]. Furthermore, LLMs have been successfully applied to multi-step
reasoning tasks by providing intermediate reasoning steps, also known as Chain-of-Thought [9, 27],
needed to arrive at an answer. Alternatively, certain studies have composed multiple LLMs or LLMs
with symbolic functions to perform multi-step reasoning [10, 16], with a pre-defined decomposition
structure. More recent studies such as least-to-most [30], successive [13] and decomposed [17]
prompting strategies divide a complex prompt into sub-prompts and answer them sequentially for
effective performance. While this line of work is close to our approach, they do not utilize previous
answers to inform successive queries. LARK is unique due to its ability to utilize logical structure in
the chain decomposition mechanism, augmentation of retrieved knowledge graph neighborhood, and
multi-phase answering structure that incorporates preceding LLM answers amidst successive queries.

3 Methodology

In this section, we will describe the problem setup of logical reasoning over knowledge graphs, and
describe the various components of our model.

3.1 Problem Formulation

In this work, we tackle the problem of logical reasoning over knowledge graphs (KGs) G : E×R that
store entities (E) and relations (R). Without loss of generality, KGs can also be organized as a set of
triplets ⟨e1, r, e2⟩ ⊆ G, where each relation r ∈ R is a Boolean function r : E×E → {True, False}
that indicates whether the relation r exists between the pair of entities (e1, e2) ∈ E. We consider
four fundamental first-order logical (FOL) operations: projection (p), intersection (∧), union (∨), and
negation (¬) to query the KG. These operations are defined as follows:

qp[Qp] ≜?Vp : {v1, v2, ..., vk} ⊆ E ∃ a1 (1)

q∧[Q∧] ≜?V∧ : {v1, v2, ..., vk} ⊆ E ∃ a1 ∧ a2 ∧ ... ∧ ai (2)

q∨[Q∨] ≜?V∨ : {v1, v2, ..., vk} ⊆ E ∃ a1 ∨ a2 ∨ ... ∨ ai (3)

q¬[Q¬] ≜?V¬ : {v1, v2, ..., vk} ⊆ E ∃ ¬a1 (4)
where Qp, Q¬ = (e1, r1); Q∧, Q∨ = {(e1, r1), (e2, r2), ..., (ei, ri)}; and ai = ri(ei, vi)

where qp, q∧, q∨, and q¬ are projection, intersection, union, and negation queries, respectively; and
Vp, V∧, V∨ and V¬ are the corresponding results of those queries [1, 7]. ai is a Boolean indicator
which will be 1 if ei is connected to vi by relation ri, 0 otherwise. The goal of logical reasoning is to
formulate the operations such that for a given query qτ of query type τ with inputs Qτ , we are able to
efficiently retrieve Vτ from entity set E, e.g., for a projection query qp[(Nobel Prize, winners)], we
want to retrieve Vp = {Nobel Prize winners} ⊆ E.

In conventional methods for logical reasoning, the query operations were typically expressed through
a geometric function. For example, the intersection of queries was represented as an intersection of

3

box representations in Query2Box [23]. However, in our proposed approach, LARK, we leverage the
advanced reasoning capabilities of Language Models (LLMs) and prioritize efficient decomposition
of logical chains within the query to enhance performance. This novel strategy seeks to overcome the
limitations of traditional methods by harnessing the power of LLMs in reasoning over KGs.

3.2 Neighborhood Retrieval and Logical Chain Decomposition

The foundation of LARK’s reasoning capability is built on large language models. Nevertheless,
the limited input length of LLMs restricts their ability to process the entirety of a knowledge graph.
Furthermore, while the set of entities and relations within a knowledge graph is unique, the reasoning
behind logical operations remains universal. Therefore, we specifically tailor the LLM prompts to
account for the above distinctive characteristics of logical reasoning over knowledge graphs. To
address this need, we adopt a two-step process:

1. Query Abstraction: In order to make the process of logical reasoning over knowledge graphs
more generalizable to different datasets, we propose to replace all the entities and relations in the
knowledge graph and queries with a unique ID. This approach offers three significant advantages.
Firstly, it reduces the number of tokens in the query, leading to improved LLM efficiency. Secondly,
it allows us to solely utilize the reasoning ability of the language model, without relying on any
external common sense knowledge of the underlying LLM. By avoiding the use of common sense
knowledge, our approach mitigates the potential for model hallucination (which may lead to the
generation of answers that are not supported by the KG). Finally, it removes any KG-specific
information, thereby ensuring that the process remains generalizable to different datasets. While
this may intuitively seem to result in a loss of information, our empirical findings, presented in
Section 4.4, indicate that the impact on the overall performance is negligible.

2. Neighborhood Retrieval: In order to effectively answer logical queries, it is not necessary for the
LLM to have access to the entire knowledge graph. Instead, the relevant neighborhoods containing
the answers can be identified. Previous approaches [6, 14] have focused on semantic retrieval for
web documents. However, we note that logical queries are deterministic in nature, and thus we
perform a k-level depth-first traversal3 over the entities and relations present in the query. Let E1

τ
and R1

τ denote the set of entities and relations in query Qτ for a query type τ , respectively. Then,
the k-level neighborhood of query qτ is defined by Nk(qτ [Qτ]) as:

N1(qτ [Qτ]) =
{
(h, r, t) :

(
h ∈ E1

τ

)
,
(
r ∈ R1

τ

)
,
(
t ∈ E1

τ

)}
(5)

Ek
τ = {h, t : (h, r, t) ∈ Nk−1(qτ [Qτ]}, Rk

τ = {r : (h, r, t) ∈ Nk−1(qτ [Qτ]} (6)

Nk(qτ [Qτ]) =
{
(h, r, t) :

(
h ∈ Ek

τ

)
,
(
r ∈ Rk

τ

)
,
(
t ∈ Ek

τ

)}
(7)

We have taken steps to make our approach more generalizable and efficient by abstracting the query
and limiting input context for LLMs. However, the complexity of a query still remains a concern. The
complexity of a query type τ , denoted by O(qτ), is determined by the number of entities and relations
it involves, i.e., O(qτ) ∝ |Eτ |+ |Rτ |. In other words, the size of the query in terms of its constituent
elements is a key factor in determining its computational complexity. This observation is particularly
relevant in the context of LLMs, as previous studies have shown that their performance tends to
decrease as the complexity of the queries they handle increases [17]. To address this, we propose a
logical query chain decomposition mechanism in LARK which reduces a complex multi-operation
query to multiple single-operation queries. Due to the exhaustive set of operations, we apply the
following strategy for decomposing the various query types:

• Reduce a k-level projection query to k one-level projection queries, e.g., a 3p query with one entity
and three relations e1

r1−→ r2−→ r3−→ A is decomposed to e1
r1−→ A1, A1

r2−→ A2, A2
r3−→ A.

• Reduce a k-intersection query to k projection queries and an intersection query, e.g., a 3i query
with intersection of two projection queries (e1

r1−→) ∧ (e2
r2−→) ∧ (e3

r3−→) = A is decomposed
to e1

r1−→ A1, e2
r2−→ A2, e3

r3−→ A2, A1 ∧ A2 ∧ A3 = A. Similarly, reduce a k-union query to k
projection queries and a union query.

The complete decomposition of the exhaustive set of query types used in previous work [22] and our
empirical studies can be found in Appendix A.

3where k is determined by the query type, e.g., for 3-level projection (3p) queries, k = 3.

4

Figure 2: An overview of the LARK model. The model takes the logical query and infers the query
type from it. The query abstraction function maps the entities and relations to abstract IDs, and the
neighborhood retrieval mechanism collects the relevant subgraphs from the overall knowledge graph.
The chains of the abstracted complex query are then logically decomposed to simpler single-operation
queries. The retrieved neighborhood and decomposed queries are further converted into LLM prompts
using a template and then processed in the LLM to get the final set of answers for evaluation.

3.3 Chain Reasoning Prompts

In the previous section, we outlined our approach to limit the neighborhood and decompose complex
queries into chains of simple queries. Leveraging these, we can now use the reasoning capability
of LLMs to obtain the final set of answers for the query, as shown in Figure 2. To achieve this, we
employ a prompt template that converts the neighborhood into a context prompt and the decomposed
queries into question prompts. It is worth noting that certain queries in the decomposition depend on
the responses of preceding queries, such as intersection relying on the preceding projection queries.
Additionally, unlike previous prompting methods such as chain-of-thought [27] and decomposition
[17] prompting, the answers need to be integrated at a certain position in the prompt. To address
this issue, we maintain a placeholder in dependent queries and a temporary cache of preceding
answers that can replace the placeholders in real-time. This also has the added benefit of maintaining
the parallelizability of queries, as we can run batches of decomposed queries in phases instead of
sequentially running each decomposed query. The specific prompt templates of both the complex and
decomposed logical queries for different query types are provided in Appendix B.

3.4 Implementation Details

We implemented LARK in Pytorch [20] on eight Nvidia A100 GPUs with 40 GB VRAM. In the
case of LLMs, we chose the FLAN-T5 model [26] due to its public availability in the Huggingface
library [28] . For efficient inference over the large-scale models, we relied on the mixed-precision
version of LLMs and the Deepspeed library [21] with Zero stage 3 optimization. The algorithm
of our model is provided in Appendix D and implementation code for all our experiments with
exact configuration files and datasets for reproducibility are publicly available4. In our experiments,
the highest complexity of a query required a 3-hop neighborhood around the entities and relations.
Hence, we set the depth limit to 3 (i.e., k = 3). Additionally, to further make our process completely
compatible with different datasets, we added a limit of n tokens on the input which is dependent on
the LLM model (for Flan-T5, n=2048). In practice, this implies that we stop the depth-first traversal
when the context becomes longer than n.

4 Experimental Results

This sections describes our experiments that aim to answer the following research questions (RQs):

RQ1. Does LARK outperform the state-of-the-art baselines on the task of logical reasoning over
standard knowledge graph benchmarks?

RQ2. How does our combination of chain decomposition query and logically-ordered answer
mechanism perform in comparison with the standard prompting techniques?

4https://github.com/Akirato/LLM-KG-Reasoning

5

https://github.com/Akirato/LLM-KG-Reasoning

RQ3. How does the scale and design of LARK’s underlying LLM model affect its performance?
RQ4. How would our model perform with support for increased token size?
RQ5. Does query abstraction affect the reasoning performance of our model?

4.1 Datasets and Baselines

We select the following standard benchmark datasets to investigate the performance of our model
against state-of-the-art models on the task of logical reasoning over knowledge graphs:

• FB15k [2] is based on Freebase, a large collaborative knowledge graph project that was created by
Google. FB15k contains about 15,000 entities, 1,345 relations, and 592,213 triplets (statements
that assert a fact about an entity).

• FB15k-237 [25] is a subset of FB15k, containing 14,541 entities, 237 relations, and 310,116 triplets.
The relations in FB15k-237 are a subset of the relations in FB15k, and was created to address some
of the limitations of FB15k, such as the presence of many irrelevant or ambiguous relations, and to
provide a more challenging benchmark for knowledge graph completion models.

• NELL995 [5] was created using the Never-Ending Language Learning (NELL) system, which is a
machine learning system that automatically extracts knowledge from the web by reading text and
inferring new facts. NELL995 contains 9,959 entities, 200 relations, and 114,934 triplets. The
relations in NELL995 cover a wide range of domains, including geography, sports, and politics.

Our criteria for selecting the above datasets was their ubiquity in previous works on this research
problem. Further details on their token size is provided in Appendix E. For the baselines, we chose
the following methods:

• GQE [15] encodes a query as a single vector and represents entities and relations in a low-
dimensional space. It uses translation and deep set operators, which are modeled as projection and
intersection operators, respectively.

• Query2Box (Q2B) [23] uses a box embedding model which is a generalization of the traditional
vector embedding model and can capture richer semantics.

• BetaE [22] uses a novel beta distribution to model the uncertainty in the representation of entities
and relations. BetaE can capture both the point estimate and the uncertainty of the embeddings,
which leads to more accurate predictions in knowledge graph completion tasks.

• HQE [8] uses the hyperbolic query embedding mechanism to model the complex queries in
knowledge graph completion tasks.

• HypE [8] uses the hyperboloid model to represent entities and relations in a knowledge graph that
simultaneously captures their semantic, spatial, and hierarchical features.

• CQD [1] decomposes complex queries into simpler sub-queries and applies a query-specific
attention mechanism to the sub-queries.

4.2 RQ1. Efficacy on Logical Reasoning

To study the efficacy of our model on the task of logical reasoning, we compare it against the previous
baselines on the following standard logical query constructs:

1. Multi-hop Projection traverses multiple relations from a head entity in a knowledge graph to
answer complex queries by projecting the query onto the target entities. In our experiments, we
consider 1p, 2p, and 3p queries that denote 1-relation, 2-relation, and 3-relation hop from the head
entity, respectively.

2. Geometric Operations apply the operations of intersection (∧) and union (∨) to answer the
query. Our experiments use 2i and 3i queries that represent the intersection over 2 and 3 entities,
respectively. Also, we study 2u queries that perform union over 2 entities.

3. Compound Operations integrate multiple operations such as intersection, union, and projection
to handle complex queries over a knowledge graph.

4. Negation Operations negate the query by finding entities that do not satisfy the given logic. In
our experiments, we examine 2in, 3in, inp, and pin queries that negate 2i, 3i, ip, and pi queries,
respectively. We also analyze pni (an additional variant of the pi query), where the negation is over
both entities in the intersection. It should be noted that BetaE is the only method in the existing
literature that supports negation, and hence, we only compare against it in our experiments.

6

We present the results of our experimental study, which compares the Mean Reciprocal Rank (MRR)
score of the retrieved candidate entities using different query constructions. MRR is calculated as the
average of the reciprocal ranks of the candidate entities 5. In order to ensure a fair comparison, We
selected these query constructions which were used in most of the previous works in this domain
[22]. An illustration of these query types is provided in Appendix A for better understanding. Our
experiments show that LARK outperforms previous state-of-the-art baselines by 33% − 64% on
an average across different query types, as reported in Table 1. We observe that the performance
improvement is higher for simpler queries, where 1p > 2p > 3p and 2i > 3i. This suggests
that LLMs are better at capturing breadth across relations but may not be as effective at capturing
depth over multiple relations. Moreover, our evaluation also encompasses testing against challenging
negation queries, for which BetaE [22] remains to be the only existing approach. Even in this complex
scenario, our findings, as illustrated in Table 2, indicate that LARK significantly outperforms the
baselines by 110%. This affirms the superior reasoning capabilities of our model in tackling complex
query scenarios. Another point of note is that certain baselines such as CQD are able to outperform
LARK in the FB15k dataset for certain query types such as 1p, 3i, and ip. The reason for this is that
FB15k suffers from a data leakage from training to validation and testing sets [25]. This unfairly
benefits the training-based baselines over the inference-only LARK model.

Table 1: Performance comparison between LARK and the baseline in terms of their efficacy of
logical reasoning using MRR scores. The rows present various models and the columns correspond to
different query structures of multi-hop projections, geometric operations, and compound operations.
The best results for each query type in every dataset is highlighted in bold font.

Dataset Models 1p 2p 3p 2i 3i ip pi 2u up
FB15k GQE 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6

Q2B 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7
BetaE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2
HQE 54.3 33.9 23.3 38.4 50.6 12.5 24.9 35.0 25.9
HypE 67.3 43.9 33.0 49.5 61.7 18.9 34.7 47.0 37.4
CQD 79.4 39.6 27.0 74.0 78.2 70.0 43.3 48.4 17.5
LARK(complex) 72.8 47.5 32.7 65.9 59.4 18.3 47.8 47.6 40.3
LARK(ours) 72.8 50.7 36.2 66.9 60.4 23.5 56.1 52.4 40.6

FB15k-237 GQE 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7
Q2B 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6
BetaE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7
HQE 37.6 20.9 16.9 25.3 35.2 17.3 8.2 15.6 17.9
HypE 49.0 34.3 23.7 33.9 44 18.6 30.5 41.0 26
CQD 44.5 11.3 8.1 32.0 42.7 25.3 15.3 13.4 4.8
LARK(complex) 73.6 37.2 23.4 45 42.1 17.7 41.7 54.3 28.0
LARK(ours) 73.6 40.5 26.8 46.1 43.1 22.9 49.9 62.8 28.3

NELL995 GQE 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8
Q2B 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3
BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5
HQE 35.5 20.9 18.9 23.2 36.3 8.8 13.7 21.3 15.5
HypE 46.0 30.6 27.9 33.6 48.6 31.8 13.5 20.7 26.4
CQD 50.7 18.4 13.8 39.8 49.0 29.0 22.0 16.3 9.9
LARK(complex) 87.8 42.9 29.6 50.6 47.8 17.2 19.3 7.2 40.6
LARK(ours) 87.8 45.7 33.5 51.3 48.7 22.2 23.1 20.6 41.1

4.3 RQ2. Advantages of Chain Decomposition

The aim of this experiment is to investigate the advantages of using chain decomposed queries over
standard complex queries. We employ the same experimental setup described in Section 4.2. Our
results, in Tables 1 and 2, demonstrate that utilizing chain decomposition contributes to a significant
improvement of 9% − 26% in our model’s performance. This improvement is a clear indication
of the LLMs’ ability to capture a broad range of relations and effectively utilize this capability
for enhancing the performance on complex queries. This study highlights the potential of using
chain decomposition to overcome the limitations of complex queries and improve the efficiency of
logical reasoning tasks. This finding is a significant contribution to the field of natural language
processing and has implications for various other applications such as question-answering systems

5More metrics such as HITS@K=1,3,10 are reported in Appendix C.

7

Table 2: Performance comparison between LARK and the baseline for negation query types using
MRR scores. The best results for each query type in every dataset is highlighted in bold font. Our
model’s performance is significantly higher on most negation queries. However, the performance is
limited in 3in and pni queries due to their high number of tokens (shown in Table E).

Dataset Models 2in 3in inp pin pni
FB15k BetaE 14.3 14.7 11.5 6.5 12.4

LARK(complex) 15.2 4.9 31.5 22.2 9.4
LARK(ours) 16.2 5.7 33.7 26.1 10.0

FB15k-237 BetaE 5.1 7.9 7.4 3.6 3.4
LARK(complex) 5.6 2.7 20.9 12.5 2.6
LARK(ours) 6.5 3.4 23.2 16.5 3.2

NELL995 BetaE 5.1 7.8 10.0 3.1 3.5
LARK(complex) 8.4 4.6 22.1 10.1 6.0
LARK(ours) 9.9 5.9 24.5 13.3 7.3

and knowledge graph completion. Overall, our results suggest that chain-decomposed queries could
be a promising approach for improving the performance of LLMs on complex logical reasoning tasks.

4.4 RQ3. Analysis of LLM scale

This experiment analyzes the impact of the size of the underlying LLMs and query abstraction on the
overall LARK model performance. To examine the effect of LLM size, we compared three variants
of the Flan-T5 model, namely, flan-t5-l, flan-t5-xl, and flan-t5-xxl, which have 780 million, 3 billion,
and 11 billion parameters, respectively. Our evaluation results, presented in Table 3, show that the
performance of the LARK model improves by 72% and 118% when transitioning from flan-t5-l to
flan-t5-xl, and from flan-t5-xl to flan-t5-xxl, respectively. This indicates that increasing the number
of LLM parameters can enhance the performance of LARK model.

Table 3: MRR scores of LARK on FB15k-237 dataset with underlying LLMs of different sizes. The
best results for each query type is highlighted in bold font.

LLM # Params 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
Flan-t5-l 780M 14.0 16.1 9.3 6.2 4.5 15.3 9.2 13.3 17.1 3.6 1.7 6.0 6.0 0.8
Flan-t5-xl 3B 72.3 34.1 21.2 10.5 24.3 20.8 17.7 21 26.2 3.7 1.5 13.8 7.3 1.7
Flan-t5-xxl 11B 72.8 50.7 36.2 66.9 60.4 23.5 56.1 52.4 40.6 6.5 3.4 23.2 16.5 3.2

4.5 RQ4. Study on Increased Token Limit of LLMs

From the dataset details provided in Appendix E, we observe that the token size of different query
types shows considerable fluctuation from 58 to over 100, 000. Unfortunately, the token limit of
Flan-T5, considered as the base in our experiments, is 2048. This limit is insufficient to demonstrate
the full potential performance of LARK on our tasks. To address this limitation, we consider the
availability of models with higher token limits, such as GPT-3.5 [19]. However, we acknowledge
that these models are expensive to run and thus, we could not conduct a thorough analysis on the
entire dataset. Nevertheless, to gain insight into LARK’s potential with increased token size, we
randomly sampled 1000 queries per query type from each dataset with token length over 2048 and
less than 4096 and compared our model on these queries with GPT-3.5 and Flan-T5 as the base. The
evaluation results, which are displayed in Table 4, demonstrate that transitioning from flan-t5-xxl
to GPT-3.5 can lead to a significant performance improvement of 29%-40% for the LARK model
which suggests that increasing the token limit of LLMs may have significant potential of further
performance enhancement.

4.6 RQ5. Effects of Query Abstraction

Figure 3: Effects of Query Abstraction.

Regarding the analysis of query abstraction, we consid-
ered a variant of LARK called LARK (semantic), which
retains semantic information in KG entities and relations.
As shown in Figure 3, we observe that semantic infor-
mation provides a minor performance enhancement of
0.01% for simple projection queries. However, in more
complex queries, it results in a performance degradation
of 0.7%− 1.4%. The primary cause of this degradation

8

Table 4: MRR scores of LARK with Flan-T5 and GPT LLMs as the underlying base models. The
best results for each query type in every dataset is highlighted in bold font.

FB15k
LLM 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
Flan-t5-l 0.0 0.0 0.1 0.0 0.0 1.5 0.6 5.7 0.0 0.8 0.3 1.0 2.8 0.9
Flan-t5-xl 20.2 18.2 19.1 0.0 0.1 23.8 11.3 8.7 0.0 7.2 3.4 16.4 18.8 4.3
Flan-t5-xxl 20.7 19.9 21.1 0.1 0.1 20.3 26.8 28.6 0.0 10.8 5.7 24.7 50.1 6.7
GPT-3.5 36.1 34.6 36.8 17.0 14.4 35.4 46.7 39.3 19.5 18.8 10.0 43.1 56.7 11.6

FB15k-237
LLM 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
Flan-t5-l 0.0 0.0 0.1 0.0 0.0 1.5 0.7 5.9 0.0 2.1 0.5 1.6 3.3 3.3
Flan-t5-xl 20.0 23.2 26.6 0.0 0.1 24.2 12.9 9.0 0.0 20.1 6.3 25.4 22.1 15.8
Flan-t5-xxl 20.5 25.4 29.4 0.1 0.1 20.6 30.5 29.5 0.0 30.2 10.7 38.3 58.8 24.4
GPT-3.5 35.7 44.2 51.2 24.8 20.2 36.0 53.1 40.6 28.1 52.5 18.7 66.8 66.6 42.4

NELL995
LLM 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
Flan-t5-l 0.0 0.0 0.1 0.0 0.0 1.4 0.3 5.6 0.0 1.1 0.4 1.1 2.3 2.1
Flan-t5-xl 24.2 20.7 23.3 0.0 0.1 21.9 5.2 8.5 0.0 10.6 5.5 17.4 15.2 10.0
Flan-t5-xxl 24.7 22.6 25.7 0.1 0.1 18.7 12.3 22.1 0.0 15.9 9.4 26.2 26.3 15.4
GPT-3.5 43.1 39.4 44.8 18.3 15.5 32.6 21.4 38.5 28.3 27.7 16.4 45.7 45.9 26.8

is that the inclusion of semantic information exceeds the LLMs’ token limit, leading to a loss of
neighborhood information. Hence, we assert that query abstraction is not only a valuable technique
for mitigating model hallucination and achieving generalization across different KG datasets but can
also enhance performance by reducing token size.

5 Broader Impact

The proposed approach of using Large Language Models (LLMs) for complex logical reasoning
over Knowledge Graphs (KGs) is expected to pave a new way for improved reasoning over large,
noisy, and incomplete real-world KGs. This can potentially have a significant impact on various
applications such as natural language understanding, question answering systems, and intelligent
information retrieval systems, etc. For example, in healthcare, KGs can be used to represent patient
data, medical knowledge, and clinical research, and logical reasoning over these KGs can enable
better diagnosis, treatment, and drug discovery. However, there are also ethical considerations to
be taken into account. As with most AI-based technology, there is a potential risk of inducing bias
into the model, which can lead to unfair decisions and actions. Bias can be introduced in the KGs
themselves, as they are often created semi-automatically from biased sources, and can be amplified
by the logical reasoning process. Moreover, the large amount of data used to train LLMs can also
introduce bias, as it may reflect societal prejudices and stereotypes. Therefore, it is essential to
carefully monitor and evaluate the KGs and LLMs used in this approach to ensure fairness and avoid
discrimination. The performance of this method is also dependent on the quality and completeness of
the KGs used, and the limited token size of current LLMs. But, we also observe that the current trend
of increasing LLM token limits will soon resolve some of these limitations.

6 Conclusion

In this paper, we presented LARK, the first approach to integrate logical reasoning over knowledge
graphs with the capabilities of LLMs. Our approach utilizes logically-decomposed LLM prompts to
enable chain reasoning over subgraphs retrieved from knowledge graphs, allowing us to efficiently
leverage the reasoning ability of LLMs. Through our experiments on logical reasoning across
standard KG datasets, we demonstrated that LARK outperforms previous state-of-the-art approaches
by a significant margin on 14 different FOL query types. Finally, our work also showed that the
performance of LARK improves with increasing scale and better design of the underlying LLMs. We
demonstrated that LLMs that can handle larger input token lengths can lead to significant performance
improvements. Overall, our approach presents a promising direction for integrating LLMs with
logical reasoning over knowledge graphs.

9

References
[1] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query

answering with neural link predictors. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=Mos9F9kDwkz.

[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A
collaboratively created graph database for structuring human knowledge. In Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08,
page 1247–1250, New York, NY, USA, 2008. Association for Computing Machinery. URL
https://doi.org/10.1145/1376616.1376746.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[5] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, and
Tom M. Mitchell. Toward an architecture for never-ending language learning. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI’10, page 1306–1313.
AAAI Press, 2010.

[6] Xiang Chen, Lei Li, Ningyu Zhang, Xiaozhuan Liang, Shumin Deng, Chuanqi Tan, Fei
Huang, Luo Si, and Huajun Chen. Decoupling knowledge from memorization: Retrieval-
augmented prompt learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=Q8GnGqT-GTJ.

[7] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan Reddy.
Probabilistic entity representation model for reasoning over knowledge graphs. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 23440–23451. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
c4d2ce3f3ebb5393a77c33c0cd95dc93-Paper.pdf.

[8] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K. Reddy.
Self-supervised hyperboloid representations from logical queries over knowledge graphs. In
Proceedings of the Web Conference 2021, WWW ’21, page 1373–1384, New York, NY, USA,
2021. Association for Computing Machinery. URL https://doi.org/10.1145/3442381.
3449974.

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[10] Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting
large language models for interpretable logical reasoning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=3Pf3Wg6o-A4.

10

https://openreview.net/forum?id=Mos9F9kDwkz
https://doi.org/10.1145/1376616.1376746
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=Q8GnGqT-GTJ
https://openreview.net/forum?id=Q8GnGqT-GTJ
https://proceedings.neurips.cc/paper_files/paper/2021/file/c4d2ce3f3ebb5393a77c33c0cd95dc93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c4d2ce3f3ebb5393a77c33c0cd95dc93-Paper.pdf
https://doi.org/10.1145/3442381.3449974
https://doi.org/10.1145/3442381.3449974
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4

[11] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of reasoning
over entities, relations, and text using recurrent neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume
1, Long Papers, pages 132–141, Valencia, Spain, April 2017. Association for Computational
Linguistics. URL https://aclanthology.org/E17-1013.

[12] Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu Duan, Qiaoyu Tan, and Zhimeng Jiang.
Hierarchy-aware multi-hop question answering over knowledge graphs. In Proceedings of the
Web Conference 2023, WWW ’23, New York, NY, USA, 2023. Association for Computing
Machinery. URL https://doi.org/10.1145/3543507.3583376.

[13] Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt Gardner. Successive prompting
for decomposing complex questions. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 1251–1265, Abu Dhabi, United Arab Emirates,
December 2022. Association for Computational Linguistics. URL https://aclanthology.
org/2022.emnlp-main.81.

[14] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:
Retrieval-augmented language model pre-training. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

[15] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding
logical queries on knowledge graphs. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper_files/paper/2018/file/ef50c335cca9f340bde656363ebd02fd-Paper.pdf.

[16] Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras,
and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive explana-
tions. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 1266–1279, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.82.

[17] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=_nGgzQjzaRy.

[18] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, page 809–816, Madison, WI, USA,
2011. Omnipress.

[19] OpenAI. Gpt-4 technical report. arXiv, 2023.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[21] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’20, page 3505–3506, New York, NY, USA, 2020. Association for
Computing Machinery. URL https://doi.org/10.1145/3394486.3406703.

[22] Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
graphs. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

11

https://aclanthology.org/E17-1013
https://doi.org/10.1145/3543507.3583376
https://aclanthology.org/2022.emnlp-main.81
https://aclanthology.org/2022.emnlp-main.81
https://proceedings.neurips.cc/paper_files/paper/2018/file/ef50c335cca9f340bde656363ebd02fd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/ef50c335cca9f340bde656363ebd02fd-Paper.pdf
https://aclanthology.org/2022.emnlp-main.82
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3394486.3406703

[23] Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BJgr4kSFDS.

[24] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic
knowledge. In Proceedings of the 16th International Conference on World Wide Web, WWW
’07, page 697–706, New York, NY, USA, 2007. Association for Computing Machinery. URL
https://doi.org/10.1145/1242572.1242667.

[25] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1499–
1509, Lisbon, Portugal, September 2015. Association for Computational Linguistics. URL
https://aclanthology.org/D15-1174.

[26] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=gEZrGCozdqR.

[27] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

[28] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October
2020. Association for Computational Linguistics. URL https://aclanthology.org/2020.
emnlp-demos.6.

[29] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. QA-
GNN: Reasoning with language models and knowledge graphs for question answering. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 535–546, Online, June
2021. Association for Computational Linguistics. URL https://aclanthology.org/2021.
naacl-main.45.

[30] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?id=
WZH7099tgfM.

12

https://openreview.net/forum?id=BJgr4kSFDS
https://doi.org/10.1145/1242572.1242667
https://aclanthology.org/D15-1174
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2021.naacl-main.45
https://aclanthology.org/2021.naacl-main.45
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

Appendix

A Query Decomposition of Different Query Types

Figure 4 provides the query decomposition of different query types considered in our empirical study
as well as previous literature in the area.

Figure 4: Query Decomposition of different query types considered in our experiments.

13

B Prompt Templates of Different Query Types

The prompt templates for full complex logical queries with multiple operations and decomposed
elementary logical queries with single operation are provided in Tables 5 and 6, respectively.

Table 5: Full Prompt Templates of Different Query Types.
Type Logical Query Template for Full Prompts
Context Nk(qτ [Qτ]) Given the following (h,r,t) triplets where entity h is related to entity t

by relation r; (h1, r1, t1), (h2, r2, t2), (h3, r3, t3), (h4, r4, t4),
(h5, r5, t5), (h6, r6, t6), (h7, r7, t7), (h8, r8, t8)

1p ∃X.r1(X, e1) Which entities are connected to e1 by relation r1?
2p ∃X.r1(X,∃Y.r2(Y, e1) Let us assume that the set of entities E is connected to entity e1 by

relation r1. Then, what are the entities connected to E by relation r2?
3p ∃X.r1(X,∃Y.r2(Y,∃Z.r3(Z, e1) Let us assume that the set of entities E is connected to entity e1 by

relation r1 and the set of entities F is connected to entities in E by
relation r2. Then, what are the entities connected to F by relation r3?

2i ∃X.[r1(X, e1) ∧ r2(X, e2)] Let us assume that the set of entities E is connected to entity e1
by relation r1 and the set of entities F is connected to entity e2 by
relation r2. Then, what are the entities in the intersection of set E
and F, i.e., entities present in both F and G?

3i ∃X.[r1(X, e1) ∧ r2(X, e2) ∧ r3(X, e3)] Let us assume that the set of entities E is connected to entity e1 by
relation r1, the set of entities F is connected to entity e2 by relation
r2 and the set of entities G is connected to entity e3 by relation r3.
Then, what are the entities in the intersection of set E, F and G, i.e.,
entities present in all E, F and G?

ip ∃X.r3(X,∃Y.[r1(Y, e1) ∧ r2(Y, e2)] Let us assume that the set of entities E is connected to entity e1 by
relation r1, F is the set of entities connected to entity e2 by relation
r2, and G is the set of entities in the intersection of E and F. Then,
what are the entities connected to entities in set G by relation r3?

pi ∃X.[r1(X,∃Y.r2(Y, e2)) ∧ r3(X, e3)] Let us assume that the set of entities E is connected to entity e1
by relation r1, F is the set of entities connected to entities in E by
relation r2, and G is the set of entities connected to entity e2 by
relation r3. Then, what are the entities in the intersection of set F
and G, i.e., entities present in both F and G?

2u ∃X.[r1(X, e1) ∨ r2(X, e2)] Let us assume that the set of entities E is connected to entity e1
by relation r1 and F is the set of entities connected to entity e2 by
relation r2. Then, what are the entities in the union of set F and G,
i.e., entities present in either F or G?

up ∃X.r3(X,∃Y.[r1(Y, e1) ∨ r2(Y, e2)] Let us assume that the set of entities E is connected to entity e1
by relation r1 and F is the set of entities connected to entity e2 by
relation r2. G is the set of entities in the union of E and F. Then,
what are the entities connected to entities in G by relation r3?

2in ∃X.[r1(X, e1) ∧ ¬r2(X, e2)] Let us assume that the set of entities E is connected to entity e1 by
relation r1 and F is the set of entities connected to entity e2 by any
relation other than relation r2. Then, what are the entities in the
intersection of set E and F, i.e., entities present in both F and G?

3in ∃X.[r1(X, e1) ∧ r2(X, e2) ∧ ¬r3(X, e3)] Let us assume that the set of entities E is connected to entity e1 by
relation r1, F is the set of entities connected to entity e2 by relation
r2, and F is the set of entities connected to entity e3 by any relation
other than relation r3. Then, what are the entities in the intersection
of set E and F, i.e., entities present in both F and G?

inp ∃X.r3(X,∃Y.[r1(Y, e1) ∧ ¬r2(Y, e2)] Let us assume that the set of entities E is connected to entity e1 by
relation r1, and F is the set of entities connected to entity e2 by any
relation other than relation r2. Then, what are the entities that are
connected to the entities in the intersection of set E and F by relation
r3?

pin ∃X.[r1(X,∃Y.¬r2(Y, e2)) ∧ r3(X, e3)] Let us assume that the set of entities E is connected to entity e1
by relation r1, F is the set of entities connected to entities in E by
relation r2, and G is the set of entities connected to entity e2 by any
relation other than relation r3. Then, what are the entities in the
intersection of set F and G, i.e., entities present in both F and G?

pni ∃X.[r1(X,∃Y.¬r2(Y, e2)) ∧ ¬r3(X, e3)] Let us assume that the set of entities E is connected to entity e1 by
relation r1, F is the set of entities connected to entities in E by any
relation other than r2, and G is the set of entities connected to entity
e2 by relation r3. Then, what are the entities in the intersection of
set F and G, i.e., entities present in both F and G?

C Analysis of Logical Reasoning Performance using HITS Metric

Tables 7 and 8 present the HITS@K=3 results of baselines and our model. HITS@K indicates the
accuracy of predicting correct candidates in the top-K results.

14

Table 6: Decomposed Prompt Templates of Different Query Types.
Type Logical Query Template for Decomposed Prompts
Context Nk(qτ [Qτ]) Given the following (h,r,t) triplets where entity h is related to entity t

by relation r; (h1, r1, t1), (h2, r2, t2), (h3, r3, t3), (h4, r4, t4),
(h5, r5, t5), (h6, r6, t6), (h7, r7, t7), (h8, r8, t8)

1p ∃X.r1(X, e1) Which entities are connected to e1 by relation r1?
2p ∃X.r1(X,∃Y. Which entities are connected to e1 by relation r1?

r2(Y, e1) Which entities are connected to any entity in [PP1] by relation r2?
3p ∃X.r1(X,∃Y Which entities are connected to e1 by relation r1?

.r2(Y,∃Z. Which entities are connected to any entity in [PP1] by relation r2?
r3(Z, e1) Which entities are connected to any entity in [PP2] by relation r3?

2i ∃X.[r1(X, e1) Which entities are connected to e1 by relation r1?
∧r2(X, e2)] Which entities are connected to e2 by relation r2?

What are the entities in the intersection of entity sets [PP1] and
[PP2]?

3i ∃X.[r1(X, e1) Which entities are connected to e1 by relation r1?
∧r2(X, e2) Which entities are connected to e2 by relation r2?
∧r3(X, e3)] Which entities are connected to e3 by relation r3?

What are the entities in the intersection of entity sets [PP1], [PP2]
and [PP3]?

ip ∃X.r3(X,∃Y.[r1(Y, e1) Which entities are connected to e1 by relation r1?
∧r2(Y, e2)] Which entities are connected to e2 by relation r2?

What are the entities in the intersection of entity sets [PP1] and
[PP2]?
What are the entities connected to any entity in [PP3] by relation r3?

pi ∃X.[r1(X,∃Y.r2(Y, e2)) Which entities are connected to e1 by relation r1?
∧r3(X, e3)] Which entities are connected to [PP1] by relation r2?

Which entities are connected to e2 by relation r3?
What are the entities in the intersection of entity sets [PP2] and
[PP3]?

2u ∃X.[r1(X, e1) Which entities are connected to e1 by relation r1?
∨r2(X, e2)] Which entities are connected to e2 by relation r2?

What are the entities in the union of entity sets [PP1] and [PP2]?
up ∃X.r3(X,∃Y.[r1(Y, e1) Which entities are connected to e1 by relation r1?

∨r2(Y, e2)] Which entities are connected to e2 by relation r2?
What are the entities in the union of entity sets [PP1] and [PP2]?
Which entities are connected to any entity in [PP3] by relation r3?

2in ∃X.[r1(X, e1) Which entities are connected to e1 by any relation other than r1?
∧¬r2(X, e2)] Which entities are connected to e2 by any relation other than r2?

What are the entities in the intersection of entity sets [PP1] and
[PP2]?

3in ∃X.[r1(X, e1) Which entities are connected to e1 by any relation other than r1?
∧r2(X, e2) Which entities are connected to e2 by any relation other than r2?
∧¬r3(X, e3)] Which entities are connected to e3 by any relation other than r3?

What are the entities in the intersection of entity sets [PP1], [PP2]
and [PP3]?

inp ∃X.r3(X,∃Y.[r1(Y, e1) Which entities are connected to e1 by relation r1?
∧¬r2(Y, e2)] Which entities are connected to e2 by any relation other than r2?

What are the entities in the intersection of entity sets [PP1], and
[PP2]?
What are the entities connected to any entity in [PP3] by relation r3?

pin ∃X.[r1(X,∃Y.¬r2(Y, e2)) Which entities are connected to e1 by relation r1?
∧r3(X, e3)] Which entities are connected to entity set in [PP1] by relation r2?

Which entities are connected to e2 by any relation other than r3?
What are the entities in the intersection of entity sets [PP2] and
[PP3]?

pni ∃X.[r1(X,∃Y.¬r2(Y, e2)) Which entities are connected to e1 by relation r1?
∧¬r3(X, e3)] Which entities are connected to any entity in [PP1] by any relation

other than r2?
Which entities are connected to e2 by relation r3?
What are the entities in the intersection of entity sets [PP2] and
[PP3]?

15

Table 7: Performance comparison study between LARK and the baseline, focusing on their efficacy
of logical reasoning using HITS@K=1,3,10 scores. The rows correspond to the models and columns
denote the different query structures of multi-hop projections, geometric operations, and compound
operations. The best results for each query type in every dataset are highlighted in bold font.

Dataset Variant 1p 2p 3p 2i 3i ip pi 2u up
HITS@1

FB15k Flan-t5-l 13.5 11.0 6.9 30.3 8.7 1.4 2.5 3.0 2.7
Flan-t5-xl 70.1 22.3 16.2 49.8 44.8 1.9 4.9 4.8 4.1
complex 73.0 34.2 24 57.3 51.7 7.7 19.9 19.7 16.7
step 73.0 38.1 25.8 60.1 54.4 9.8 23.5 21.8 16.9

FB15k-237 Flan-t5-l 14.0 12.1 6.6 5.5 4.1 6.4 3.8 5.5 7.1
Flan-t5-xl 72.5 24.5 15.5 9.1 21.2 8.7 7.4 8.7 10.8
complex 73.8 26.8 17.1 39.3 36.7 7.5 17.4 22.4 11.6
step 73.8 30.3 19.1 41.4 38.8 9.6 20.9 26.1 11.8

NELL995 Flan-t5-l 0.03 0.03 0.05 0.09 0.09 0.5 0.2 0.8 0.5
Flan-t5-xl 86.4 28.3 19.6 10.2 24.0 8.4 3.4 1.2 15.7
complex 88.0 30.9 21.7 44.1 41.6 7.2 8.1 3.0 16.8
step 88.0 34.3 24.0 46.1 43.8 9.3 9.7 8.6 17.1

HITS@3
FB15k Flan-t5-l 13.9 20.2 12.5 8.9 6.4 26.5 17.5 18.7 41.4

Flan-t5-xl 69.4 46.7 30.4 15.2 34.3 35.9 33.6 29.5 63.3
complex 73.1 50.9 33.7 65.5 59.2 30.8 79.0 76.7 67.9
step 73.1 50.7 35.9 66.4 60.4 39.6 85.4 86.5 68.8

FB15k-237 Flan-t5-l 14.0 16.1 9.3 6.2 4.5 25.9 15.5 22.4 28.9
Flan-t5-xl 71.2 37.2 22.6 10.5 24.4 35.0 29.9 35.4 44.2
complex 73.6 40.5 25.0 45.1 42.2 30.1 70.4 81.9 47.4
step 73.6 40.5 26.7 46.1 43.1 38.7 74.8 86.1 48.0

NELL995 Flan-t5-l 0.03 0.04 0.07 0.1 0.1 2.2 0.8 3.1 2.2
Flan-t5-xl 85.6 42.9 28.7 11.8 27.6 33.9 13.8 4.7 64.3
complex 87.8 46.8 31.6 50.7 47.9 29.1 32.6 12.2 68.7
step 87.8 45.7 33.5 51.3 48.7 37.4 39.3 34.8 69.6

HITS@10
FB15k Flan-t5-l 13.9 20.2 14.3 8.9 6.4 26.4 17.5 18.7 41.4

Flan-t5-xl 69.0 47.2 30.9 15.1 34.2 35.8 33.7 29.5 63.3
complex 73.1 51.5 34.3 65.2 59.3 30.7 79.2 76.7 67.9
step 73.1 50.7 41.2 66.4 60.4 39.4 85.4 78.5 68.8

FB15k-237 Flan-t5-l 14.0 16.1 10.6 6.2 4.5 25.9 15.5 22.4 28.9
Flan-t5-xl 70.5 37.6 23.0 10.5 24.4 35.0 29.9 35.4 44.2
complex 73.6 41.0 25.5 45.2 42.3 30.1 70.4 81.9 47.4
step 73.6 40.5 30.6 46.1 43.1 38.7 74.8 86.1 48.0

NELL995 Flan-t5-l 0.03 0.04 0.08 0.1 0.1 2.2 0.8 3.1 2.2
Flan-t5-xl 84.9 43.4 29.2 11.8 27.6 33.9 13.8 4.7 64.3
complex 87.8 47.4 32.2 50.8 48.0 29.1 32.6 12.2 68.7
step 87.8 45.7 38.3 51.3 48.7 37.4 39.3 34.8 69.6

Table 8: Performance comparison between LARK and the baseline for negation query types using
HITS@K=1,3,10 scores. The best results for each query type in every dataset are given in bold font.

Metric Variant 2in 3in inp pin pni 2in 3in inp pin pni 2in 3in inp pin pni
HITS@1 HITS@3 HITS@10

FB15k Flan-t5-l 1.5 0.7 1.5 1.5 0.3 15.9 5.6 15.3 13.2 3.0 15.9 5.6 15.3 13.2 3.0
Flan-t5-xl 1.5 0.6 3.4 1.8 0.8 15.9 4.9 35.0 16.1 7.4 15.9 4.9 35.0 16.1 7.4
complex 6.4 2.3 13.6 7.5 3.2 23.9 8.7 53.4 27.6 11.1 23.9 8.7 53.5 27.6 11.2
step 7.1 2.6 14.3 8.8 3.3 28.3 11.3 59.0 36.0 13.2 28.3 11.3 59.0 36.0 13.2

FB15k-237 Flan-t5-l 1.6 0.8 2.5 2.0 0.2 6.4 3.4 10.3 8.2 1.0 6.4 3.4 10.3 8.2 1.0
Flan-t5-xl 1.6 0.7 5.8 2.4 0.6 6.4 3.0 23.4 9.9 2.3 6.4 3.0 23.4 9.9 2.3
complex 2.4 1.3 8.8 4.2 0.9 9.7 5.3 35.7 17.0 3.5 9.7 5.3 35.7 17.0 3.5
step 2.9 1.6 9.6 5.4 1.0 11.5 6.9 39.4 22.2 4.2 11.5 6.9 39.4 22.2 4.2

NELL995 Flan-t5-l 0.2 0.1 0.4 0.3 0.3 1.0 0.3 1.5 1.2 1.1 1.0 0.3 1.5 1.2 1.1
Flan-t5-xl 2.4 1.2 6.2 1.9 1.3 9.6 5.1 24.9 7.9 5.3 9.6 5.1 24.9 7.9 5.3
complex 3.5 2.1 9.2 3.4 2.0 14.5 8.5 37.6 13.8 8.1 14.5 8.5 37.6 13.8 8.1
step 4.2 2.6 10.1 4.4 2.5 16.9 11.1 41.8 18.0 10.0 16.9 11.1 41.8 18.0 10.0

16

D Algorithm

Algorithm for the LARK’s procedure is provided in Algorithm 1.

Algorithm 1: LARK Algorithm
Input: Logical query qτ , Knowledge Graph G : E ×R;
Output: Answer entities Vτ ;

1 # Query Abstraction: Map entity and relations to IDs
2 qτ = Abstract(qτ);
3 G = Abstract(G);
4 # Neighborhood Retrieval
5 Nk(qτ [Qτ]) = {(h, r, t)}, using Eq. (7)
6 # Query Decomposition
7 qdτ = Decomp(qτ);
8 # Initialize Answer Cache ans = {};
9 for i ∈ 1 : length

(
qdτ
)

do
10 # Replace Answer Cache in Question
11 qdτ [i] = replace(qdτ [i], ans[i− 1]);

12 ans[i] = LLM
(
qdτ [i]

)
;

13 end
14 return ans[length

(
qdτ
)
]

Table 9: Details of the token distribution for various query types in different datasets. The columns
present the mean, median, minimum (Min), and maximum (Max) values of the number of tokens in
the queries of different query types. Column ‘Cov’ presents the percentage of queries (coverage) that
contain less than 2048 tokens, which is the token limit of Flan-T5 model.

Dataset FB15k FB15k-237 NELL
Type Mean Median Min Max Cov Mean Median Min Max Cov Mean Median Min Max Cov

1p 70.2 61 58 10338 100 82.1 61 58 30326 99.9 81.7 61 58 30250 99.9
2p 331.2 106 86 27549 97.1 1420.9 140 83 130044 89.7 893.4 136 83 108950 90.9
3p 785.2 165 103 80665 91 3579.8 329 103 208616 75.7 3052.6 389 100 164545 73.7
2i 1136.7 276 119 20039 86.3 4482.8 636 119 60655 67.7 4469.3 680 119 54916 67.3
3i 2575.4 860 145 29148 68.4 8760.2 2294 145 85326 48.3 8979.4 2856 145 76834 44.8
ip 1923.8 1235 135 21048 67.4 4035.8 2017 131 32795 50.5 4838 2676 131 33271 43.6
pi 1036.8 455 140 10937 85.8 1255.6 343 141 45769 83.4 1535.3 435 135 21125 79.9
2u 1325.4 790 121 14703 80.8 2109.5 868 123 60655 68.9 2294.9 1138 125 23637 65.7
up 115.3 112 110 958 100 113.7 112 110 981 100 113.2 112 110 427 100
2in 1169.1 548 123 18016 84.9 5264.7 1116 128 60281 61.8 3496 774 124 58032 71.6
3in 4070.3 2230 159 28679 46.6 13695.8 8344 175 88561 25.9 12575.9 7061 164 88250 28.1
inp 629 112 110 73457 91.8 1949.4 394 110 115169 78.4 696.7 112 110 89660 93.8
pin 400.7 154 129 6802 95.8 1106.5 242 129 44010 87.2 418.1 131 129 24062 96.7
pni 345.9 129 127 7938 96.6 547.1 129 127 18057 95.1 289.3 129 127 17489 97.9

E Query Token Distribution in Datasets

The quantitative details of the query token’s lengths is provided in Table 9 and their complete
distribution plots are provided in Figure 5. From the results, we observe that the distribution of token
lengths is positively-skewed for most of the query types, which indicates that the number of samples
with high token lengths is small in number. Thus, small improvements in the LLMs’ token limit can
potentially lead to better coverage on most of the reasoning queries in standard KG datasets.

17

Figure 5: Probability distribution of the number of tokens in each query type. The figures contains 14
graphs for the 14 different query types. The x-axis and y-axis presents the number of tokens in the
query and their probability density, respectively.

18

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Neighborhood Retrieval and Logical Chain Decomposition
	Chain Reasoning Prompts
	Implementation Details

	Experimental Results
	Datasets and Baselines
	RQ1. Efficacy on Logical Reasoning
	RQ2. Advantages of Chain Decomposition
	RQ3. Analysis of LLM scale
	RQ4. Study on Increased Token Limit of LLMs
	RQ5. Effects of Query Abstraction

	Broader Impact
	Conclusion
	Query Decomposition of Different Query Types
	Prompt Templates of Different Query Types
	Analysis of Logical Reasoning Performance using HITS Metric
	Algorithm
	Query Token Distribution in Datasets

